

Journal of Organometallic Chemistry 519 (1996) 125-135

# Synthèse régiosélective par voie organométallique de vinylsilanes fonctionnels à partir de dérivés carbonylés $\alpha$ -éthyléniques $\alpha$ -triméthylsilylés

D. Mesnard, N. Hanaï, L. Miginiac \*

Laboratoire de Synthèse Organique associé au CNRS (URA 574), Université de Poitiers, 40, avenue du Recteur Pineau, 86022 Poitiers, France

Reçu le 16 Novembre 1995

#### Abstract

The  $\alpha$ -trimethylsilyl conjugated carbonyl derivatives 1 easily react with organometallics 2 (M = Al, Mg, Zn) and allow preparation of functional vinylsilanes 3 or 4, in regioselective manner: R'-CH=C(SiMe\_3)-C(OH)(R'')(R) 3; (R')(R)CH-C(SiMe\_3)=C(R'')(OSiMe\_3) 4.

# Résumé

Les dérivés carbonylés conjugués  $\alpha$ -triméthylsilylés 1 réagissent aisément avec des organométalliques variés 2 (M = Al, Mg, Zn) et permettent d'atteindre, de manière régiosélective, des vinylsilanes fonctionnels de type 3 ou de type 4: R'-CH=C(SiMe<sub>3</sub>)-C(OH)(R'')(R) 3; (R')(R)CH-C(SiMe<sub>3</sub>)=C(R'')(OSiMe<sub>3</sub>) 4.

Keywords: Regioselective synthesis; Vinyl silanes; Conjugated carbonyl derivatives; Silylated enol ethers

# 1. Introduction

Les vinyltriméthylsilanes sont des réactifs très utiles en synthèse organique [1–3] et leur potentialité peut être accrue par la présence sur leur structure de d'autres groupes fonctionnels. Dans ce travail, nous étudions la synthèse régiosélective de vinylsilanes fonctionnels par action d'organométalliques RM sur deux aldéhydes et deux cétones  $\alpha$ -éthyléniques  $\alpha$ -triméthylsilylés: R'-CH=C(SiMe<sub>3</sub>)-CO-R", R' = CH<sub>3</sub>, R" = H 1a; R' = H, R" = H 1b [4,5]; R' = CH<sub>3</sub>, R" = CH<sub>3</sub> 1c; R' = H, R" = CH<sub>3</sub> 1d [6].

# 2. Dérivés carbonylés la-d

Une préparation efficace de **1b** peut être réalisée à partir de l'acroléine [4,5]: nous l'avons utilisée pour obtenir **1b** et généralisée à l'aldéhyde crotonique comme produit de départ pour préparer **1a**.

La synthèse de 1c et de 1d est effectuée selon [6] par oxydation à l'aide du réactif de Jones des alcools secondaires issus de l'action de l'iodure de méthylmagnésium sur 1a et 1b.

### 3. Organométalliques RM 2a-o

Les organométalliques utilisés dans ce travail sont tous préparés selon des méthodes usuelles en synthèse organométallique (voir partie expérimentale) et peuvent être classés en cinq catégories:

(a) organométalliques dérivant de bromures allyliques (ou benzyliques):  $CH_2 = CH - CH_2 Al_{2/3}Br$  **2a**;  $CH_2 = CH - CH_2 MgBr$  **2b**;  $CH_2 = CH - CH_2 ZnBr$  **2c**;  $CH_3 - CH = CH - CH_2 ZnBr$  **2d**;  $C_6H_5 - CH_2 MgBr$  **2e**;

(b) zinciques dérivant de bromures propargyliques:  $CH_2 = C = CHZnBr 2f; CH_3 - CH = C = CHZnBr 2g;$ 

(c) zinciques dérivant de bromures  $\alpha$ -fonctionnels: C<sub>2</sub>H<sub>5</sub>OCO-CH<sub>2</sub>ZnBr **2h**; (C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>N-CO-CH<sub>2</sub>ZnBr **2i**;

(d) magnésiens dérivant de bromures phényliques ou vinyliques:  $C_6H_5MgBr 2j$ ;  $CH_3-CH=CHMgBr 2k$ ;

<sup>\*</sup> Corresponding author.

Tableau 1 Action des organométalliques issus de bromures insaturés ou fonctionnels sur l'aldéhyde 1a

| RM, Solvant                                                       | Cdt | Produit obtenu                                                           | Rdt  |
|-------------------------------------------------------------------|-----|--------------------------------------------------------------------------|------|
| $\overline{CH_2 = CH - CH_2 Al_{2/3}Br}$ , éther                  | a   | $CH_3-CH=C(SiMe_3)-CHOH-CH_2-CH=CH_2$                                    | 50 ª |
| 2a 2 273                                                          |     | (Z/E = 64/36) <b>3aa</b>                                                 |      |
| $CH_2 = CH - CH_2 MgBr$ , éther                                   | b   | $CH_3-CH=C(SiMe_3)-CHOH-CH_2-CH=CH_2$                                    | 73   |
| 2b                                                                |     | (Z/E = 64/36) <b>3aa</b>                                                 |      |
| $CH_2 = CH - CH_2 ZnBr$ , THF                                     | b   | $CH_3-CH=C(SiMe_3)-CHOH-CH_2-CH=CH_2$                                    | 77   |
| 2c                                                                |     | (Z/E = 64/36) 3aa                                                        |      |
| $CH_3-CH=CH-CH_2ZnBr$ , THF                                       | b   | $CH_3-CH=C(SiMe_3)-CHOH-CH(CH_3)-CH=CH_2$                                | 86   |
| 2d                                                                |     | (Z/E) 3ad                                                                |      |
| $C_6H_5$ -CH <sub>2</sub> MgBr, éther                             | b   | $CH_3 - CH = C(SiMe_3) - CHOH - CH_2 - C_6H_5$                           | 90   |
| 2e                                                                |     | (Z/E = 65/35) 3ae                                                        |      |
| $CH_{2} = C = CHZ_{n}Br$ . THF                                    | b   | CH <sub>2</sub> -CH=C(SiMe <sub>2</sub> )-CHOH-CH <sub>2</sub> -C≡CH     | 61   |
| 2f                                                                | U   | (Z/E = 77/23) 3af                                                        |      |
| $CH_{2}-CH=C=CHZnBr, THF$                                         | b   | $CH_{3}-CH=C(SiMe_{3})-CHOH-CH(CH_{3})-C\equiv CH$                       | 83   |
| 2g                                                                |     | (Z/E = 77/23) 3ag                                                        |      |
| C <sub>2</sub> H <sub>2</sub> O-CO-CH <sub>2</sub> ZnBr. méthylal | b   | $CH_{2}-CH=C(SiMe_{2})-CHOH-CH_{2}-CO-OC_{2}H_{2}$                       | 78   |
| 2h                                                                |     | (Z/E = 69/31) 3ah                                                        |      |
| $(C_2H_{\epsilon})_2N-CO-CH_2ZnBr, méthylal$                      | b   | $CH_{2}$ - $CH = C(SiMe_{2})$ - $CHOH - CH_{2} - CO - N(C_{2}H_{2})_{2}$ | 71   |
| 2i                                                                |     | (Z/E = 69/31) 3ai                                                        |      |
| C <sub>6</sub> H <sub>5</sub> MgBr, éther                         | b   | $CH_1 - CH = C(SiMe_1) - CHOH - C_6H_5$                                  | 70   |
| 2j                                                                |     | (Z/E = 78/22) 3aj                                                        |      |
| $\dot{CH}_3$ -CH=CHMgBr, THF                                      | b   | $CH_{3}-CH=C(SiMe_{3})-CHOH-CH=CH-CH_{3}$                                | 75   |
| 2k                                                                |     | (mélange $Z + E$ ) <b>3ak</b>                                            |      |

Conditions (Cdt). a: 0.03 mol R'-CHO/0.04 mol RM: réaction à 0°C et 15 h à 0°C. b: 0.03 mol R'-CHO/0.04 mol RM: réaction à 0°C et 15 h à 20°C.

<sup>a</sup> Pureté  $\leq 85\%$ ; dans les conditions b, on obtient une trace d'alcool et des polymères.

(e) magnésiens dérivant d'halogénures saturés: CH<sub>3</sub>MgI 2l; C<sub>2</sub>H<sub>5</sub>MgBr 2m; (CH<sub>3</sub>)<sub>2</sub>CHMgBr 2n; (CH<sub>3</sub>)<sub>3</sub>CMgCl 2o.

# 4. Généralités sur la réaction des organométalliques avec les dérivés carbonylés conjugués

De nombreuses études ont montré que les organométalliques RM agissent sur les dérivés carbonylés conjugués en donnant un mélange de deux produits résultant respectivement d'une addition 1,2 et d'une addition 1,4 [7–10]:



Qualitativement, la compétition 1,2/1,4 est contrôlée à la fois par:

- les facteurs électroniques (polarisabilité du groupe carbonyle et du système conjugué, ionicité de la liaison C-M);
- -- les facteurs stériques au niveau du dérivé carbonylé et de l'organométallique.

En particulier, pour un RM donné, les cétones conjuguées donnent à la fois l'addition 1,2 et l'addition 1,4 tandis que les aldéhydes correspondants réagissent généralement par addition 1,2 [7–10]. De même, pour un dérivé carbonylé donné, l'action des magnésiens saturés RMgX fournit des pourcentages 1,4/1,2 de plus en plus élevés au fur et à mesure que la ramification augmente sur la structure du groupe R [7–10].

A notre connaissance, l'influence de la présence sur le Carbone n°3 d'un groupe triméthylsilyle n'a pas été analysée; cependant, nous avons récemment étudié [11] la réactivité vis-à-vis d'organométalliques d'un aldéhyde de structure voisine, l'aldéhyde  $\alpha$ -allénique  $\alpha$ triméthylsilylé: CH<sub>2</sub>=C=C(SiMe<sub>3</sub>)-CHO. Celui-ci réagit aisément avec des organométalliques variés par un processus normal d'addition 1,2 (obtention d'alcools  $\alpha$ -alléniques secondaires), sauf lorsqu'il s'agit de magnésiens saturés ou phényliques, au sein de l'éther ou du THF; dans ces derniers cas, il apparait également le produit d'addition 1,4 (formation d'un aldéhyde éthylénique silylé).

# 5. Action des organométalliques sur les dérivés carbonylés α-éthyléniques α-triméthylsilylés

#### 5.1. Action sur l'aldéhyde la

$$CH_{3}-CH=C(SiMe_{3})-CHORM$$

$$\xrightarrow{H_{2}O} \begin{cases} CH_{3}-CH=C(SiMe_{3})-CHOH-R & 1, 2 \\ + \\ [CH_{3}-CH(R)-CH(SiMe_{3})-CHO] & 1, 4 \end{cases}$$

Cette réaction est donc susceptible de conduire à un alcool allylique  $\alpha$ -triméthylsilylé **3** et/ou à un aldéhyde saturé  $\alpha$ -triméthylsilylé; en ce qui concerne ce dernier, les données de la littérature [12] font état de l'instabilité de tels composés: ils subissent facilement une désilylation et s'isomérisent aisément.

Afin de pouvoir déterminer de façon précise les pourcentages d'addition 1,2/1,4 dans cette réaction, nous avons envisagé de piéger le produit d'addition 1,4 sous forme d'éther d'énol silicié:

 $CH_3-CH(R)-C(SiMe_3)=CH-OSiMe_3 4.$ 

A cet effet, le milieu réactionnel est traité par  $Me_3SiCl$  (ou mieux par  $Me_3SiCl$ /HMPT) selon [13,14], avant hydrolyse. Nous avons donc, par la suite, utilisé systématiquement cette méthode de silylation chaque fois qu'une addition 1,4 a été décelée.

Nous avons constaté que dans des conditions expérimentales usuelles, les quinze organométalliques 2a-oréagissent aisément avec **1a** (Tableaux 1 et 2).

Dans le Tableau 1, nous constatons que:

--- les aluminiques, magnésiens et zinciques dérivant de bromures allyliques conduisent uniquement aux alcools secondaires, produits résultant d'une addition 1,2. Comme la réaction semble difficile avec l'aluminique, nous avons utilisé uniquement les magnésiens et zinciques par la suite. Dans le cas du bromure de crotylzinc, la réaction a lieu avec transposition allylique, tandis qu'elle se déroule normalement avec le bromure de benzylmagnésium;

 les zinciques issus de bromures propargyliques (de structure allénique) forment uniquement les alcools secondaires homopropargyliques;

Ces résultats sont en accord avec le fait qu'un

aldéhyde conjugué réagit généralement en donnant une réaction d'addition 1,2, sauf cas structural particulier [7a].

Les alcools obtenus correspondent généralement à un mélange d'isomères Z et E dont les proportions ont été déterminées par RMN selon [15].

# 5.1.1. Remarques

(a) La réaction de réduction de **1a** par un hydrure métallique conduit également au seul produit d'addition 1,2:

$$CH_3 - CH = C(SiMe_3) - CHO$$

$$\xrightarrow{1) \text{ NaBH}_4} \text{ CH}_3 - \text{CH} = \text{C}(\text{SiMe}_3) - \text{CH}_2\text{OH}$$
  
$$\text{Rdt} = 60\%$$

(b) Dans les conditions expérimentales utilisées dans ce travail, le magnésien acétylénique  $C_6H_{13}-C\equiv CMgBr$ , au sein du mélange éther- $CH_2Cl_2$ , s'est révélé sans action sur **1a**, vraisemblablement par suite d'une réactivité plus faible que celle d'un magnésien saturé ou allylique, au sein de l'éther.

Les résultats du Tableau 2 montrent que:

- parmi les magnésiens saturés, seul l'iodure de méthylmagnésium conduit uniquement à l'alcool résultant d'une addition 1,2;

— les autres magnésiens saturés conduisent au mélange des produits d'addition 1,2 et 1,4: l'intervention de l'addition 1,4 augmente nettement en fonction de l'encombrement sur le groupe R du magnésien, pour devenir exclusive avec le chlorure de tertiobutylmagnésium.

L'aldéhyde conjugué  $\alpha$ -triméthylsilylé **1a** est donc apte à donner, lui-aussi, une réaction d'addition 1,4. Les éthers d'énol siliciés **4** correspondent généralement à un mélange d'isomères Z et E, dont les configurations et les pourcentages ont été déterminés par effet NOE en <sup>1</sup>H RMN (voir Partie expérimentale).

# 5.2. Action sur l'aldéhyde 1b

Cette étude a été réalisée avec les quatre organométalliques 2c, 2j, 2l et 2m représentatifs des catégories étudiées dans le cas de 1a.

La réaction a lieu dans tous les cas envisagés (Tableau 3): on constate qu'ici également, le bromure d'allylzinc et l'iodure de méthylmagnésium conduisent uniquement à l'alcool résultant d'une addition 1,2. Le bromure de phénylmagnésium réagit en donnant une majorité de produit d'addition 1,2, mais on observe ici la formation d'une certaine quantité de produit d'addition 1,4; il en est de même avec le bromure d'éthylmagnésium.

| Tableau 2                                       |   |
|-------------------------------------------------|---|
| Action des magnésiens saturés sur l'aldéhyde la | ł |

| RM, Solvant                                      | Cdt | Produit obtenu                                              |             | Rdt<br>(%) |
|--------------------------------------------------|-----|-------------------------------------------------------------|-------------|------------|
| CH <sub>3</sub> MgI, ether<br>21                 | b   | $CH_{3}-CH=C(S_{1}Me_{3})-CHOH-CH_{3}$<br>(Z/E = 67/33)     | 3al         | 93         |
|                                                  |     | $(CH_3-CH=C(SiMe_3)-CHOH-C_2H_5)$<br>(Z/E = 35/65)          | 3am         | 36         |
| $C_2H_5MgBr$ , ether                             | с   |                                                             |             |            |
| 2m                                               |     | $(CH_3-CH(C_2H_5)-C(SiMe_3)=CH-OSiMe_3)$<br>(Z/E = 22/78)   | 4am         | 47         |
|                                                  |     | $CH_3-CH=C(SiMe_3)-CHOH-CH(CH_3)_2$<br>(E)                  | 3an         | 15         |
| (CH <sub>3</sub> ) <sub>2</sub> CHMgBr, ether    | с   | $\begin{pmatrix} + \\ + \end{pmatrix}$                      |             |            |
| 2n                                               |     | $CH_{3}-CH[CH(CH_{3})_{2}]-C(S_{1}Me_{3})=CH-OSiMe_{3}$ (E) | 4an         | 68         |
| $(CH_3)_3$ CMgCl, ether <b>20</b>                | c   | $CH_3$ -CH[C(CH_3)_3]-C(SiMe_3)=CH-OSiMe_3<br>(E)           | <b>4</b> ao | 37         |
| (CH <sub>3</sub> ) <sub>3</sub> CMgCl, THF<br>20 | c   | $CH_3-CH[C(CH_3)_3]-C(SiMe_3)=CH-OSiMe_3$<br>(E)            | 4ao         | 42         |

Conditions (Cdt). b: 0.03 mol R'-CHO/0.04 mol RM; réaction à °C et 15 h à 20°C. c: 0.03 mol R'-CHO/0.04 mol RM; réaction à 0°C et 15 h à 20°C. Addition à 0°C de HMPT (9 ml) et agitation 1 h à 0°C. Addition à 0°C de Me<sub>3</sub>SiCl (0.05 mol) et agitation 4 h à 20°C. Addition à 0°C de Et<sub>3</sub>N (0.05 mol) et agitation 2 h à 20°C.

 Tableau 3

 Action des organométalliques sur l'aldéhyde 1b

| RM, Solvant                                            | Cdt | Produit obtenu                                                                         |     | Rdt (%) |
|--------------------------------------------------------|-----|----------------------------------------------------------------------------------------|-----|---------|
| $CH_2 = CH - CH_2 ZnBr$ , THF<br>2c                    | b   | $CH_2 = C(SiMe_3) - CHOH - CH_2 - CH = CH_2$                                           | 3bc | 65      |
| C <sub>6</sub> H <sub>5</sub> MgBr, éther<br><b>2i</b> | c   | $\int_{+}^{CH_2 = C(SiMe_3) - CHOH - C_6H_5}$                                          | 3bj | 50      |
| ~                                                      |     | $\begin{cases} C_6 H_5 - CH_2 - C(SiMe_3) = CH - OSiMe_3 \\ (Z/E = 15/85) \end{cases}$ | 4bj | 15      |
| CH <sub>3</sub> MgI, éther<br>2l                       | b   | $CH_2 = C(SiMe_3) - CHOH - CH_3$                                                       | 3bl | 60      |
| 0 H M D (4                                             |     | $(CH_2 = C(SiMe_3) - CHOH - C_2H_5)$                                                   | 3bm | 30      |
| $C_2H_5MgBr$ , ether<br><b>2m</b>                      | с   | $\binom{+}{C_2H_5-CH_2-C(SiMe_3)=CH-OSiMe_3}$<br>(Z/E = 70/30)                         | 4bm | 25      |

Conditions (Cdt). b: 0.03 mol R'-CHO/0.04 mol RM; réaction à 0°C et 15 h à 20°C. c: 0.03 mol R'-CHO/0.04 mol RM; réaction à 0°C et 15 h à 20°C. Addition à 0°C de HMPT (9 ml) et agitation 1 h à 0°C. Addition à 0°C de Me<sub>3</sub>SiCl (0.05 mol) et agitation 4 h à 20°C. Addition à 0°C de Et<sub>3</sub>N (0.05 mol) et agitation 2 h à 20°C.

Tableau 4 Action des organométalliques sur la cétone 1c

| RM, Solvant                                         | Cdt | Produit obtenu                                               |     | Rdt<br>(%) |
|-----------------------------------------------------|-----|--------------------------------------------------------------|-----|------------|
| $\overline{CH_2 = CH - CH_2 ZnBr}$ , THF <b>2</b> c | b   | $CH_3-CH=C(SiMe_3)-C(OH)(CH_3)-CH_2-CH=CH_2$ $(Z/E = 37/63)$ | Зсс | 58         |
| $C_6H_5MgBr$ , éther<br>2j                          | c   | $CH_3-CH(C_6H_5)-C(SiMe_3)=C(CH_3)-OSiMe_3$<br>(E)           | 4cj | 52         |
| $C_2H_5MgBr$ , éther<br>2m                          | С   | $CH_3-CH(C_2H_5)-C(SiMe_3)=C(CH_3)-OSiMe_3$<br>(E)           | 4cm | 64         |

Conditions (Cdt). b: 0.03 mol R'-CO-R"/0.04 mol RM; réaction à 0°C et 15 h à 20°C. c: 0.03 mol R'-CO-R"/0.04 mol RM; réaction à 0°C et 15 h à 20°C. Addition à 0°C de HMPT (9 ml) et agitation 1 h à 0°C. Addition à 0°C de Me<sub>3</sub>SiCl (0.05 mol) et agitation 4 h à 20°C. Addition à 0°C de Et<sub>3</sub>N (0.05 mol) et agitation 2 h à 20°C.

 Tableau 5

 Action des organométalliques sur la cétone 1d

| RM, Solvant                  | Cdt | Cdt Produit obtenu                                      |     | Rdt<br>(%) |  |
|------------------------------|-----|---------------------------------------------------------|-----|------------|--|
| $CH_2 = CH - CH_2 ZnBr, THF$ | b   | $CH_2 = C(SiMe_3) - C(OH)(CH_3) - CH_2 - CH = CH_2$     | 3de | 75         |  |
| $C_6H_5MgBr$ , éther<br>2i   | с   | $C_{6}H_{5}-CH_{2}-C(SiMe_{3})=C(CH_{3})-OSiMe_{3}$ (E) | 4dj | 55         |  |
| $C_2H_5MgBr$ , éther<br>2m   | с   | $C_2H_5-CH_2-C(SiMe_3)=C(CH_3)-OSiMe_3$ (E)             | 4dm | 60         |  |

Conditions (Cdt). b: 0.03 mol R'-CO-R''/0.04 mol RM; réaction à 0°C et 15 h à 20°C. c: 0.03 mol R'-CO-R''/0.04 mol RM; réaction à 0°C et 15 h à 20°C. Addition à 0°C de HMPT (9 ml) et agitation 1 h à 0°C. Addition à 0°C de Me<sub>3</sub>SiCl (0.05 mol) et agitation 4 h à 20°C. Addition à 0°C de Et<sub>3</sub>N (0.05 mol) et agitation 2 h à 20°C.

#### 5.3. Action sur les cétones 1c et 1d

Les résultats réunis dans les Tableaux 4 et 5 montrent que:

— le bromure d'allylzinc réagit avec ces cétones pour fournir, comme dans le cas des aldéhydes conjugués  $\alpha$ -triméthylsilylés, le seul alcool provenant d'une addition 1,2;

— par contre, le bromure d'éthylmagnésium et le bromure de phénylmagnésium conduisent uniquement au produit d'addition 1,4; dans tous les cas étudiés, il ne se forme que l'isomère E. L'augmentation de l'encombrement stérique au niveau du groupe carbonyle en passant des aldéhydes aux cétones permet d'obtenir ici de façon exclusive les produits d'addition 1,4.

### 6. Conclusion

Les aldéhydes et cétones  $\alpha$ -éthyléniques  $\alpha$ triméthylsilylés permettent d'accéder, par voie organométallique, à des silanes vinyliques fonctionnels.

Avec les organométalliques insaturés ou  $\alpha$ -fonctionnels, on observe uniquement une addition 1,2 conduisant à des silanes vinyliques à fonction alcool: R'-CH=C(SiMe<sub>3</sub>)-C(OH)(R)(R'') **3**.

Avec certains magnésiens (R = saturé, phénylique), nous avons pu mettre en évidence la formation du produit résultant d'une addition 1,4; ce processus est généralement favorisé par l'encombrement stérique, soit au niveau de l'organométallique, soit au niveau de la fonction carbonyle. Les produits correspondant à l'addition 1,4 sont isolés sous forme d'éthers d'énol 4 ((R')(R)CH-C(SiMe<sub>3</sub>)=C(OSiMe<sub>3</sub>)-R" 4) qui, en tant que tels, peuvent participer à une très large variété de transformations [16,17].

Enfin, en ce qui concerne la compétition: addition 1,2/addition 1,4, les résultats obtenus avec les dérivés carbonylés 1a-d sont tout à fait comparables à ceux que

nous avons observés [11] avec l'aldéhyde  $\alpha$ -allénique CH<sub>2</sub>=C=C(SiMe<sub>3</sub>)-CHO.

# 7. Partie expérimentale

# 7.1. Généralités

Les chromatographies en phase gazeuse ont été effectuées sur un appareil GC 121 MB Delsi Instruments (détecteur à conductibilité thermique) équipé de colonnes analytiques (longueur: 2 m; diamètre: 0,63 cm; remplissage: soit 20% SE 30, soit 20% Carbowax 20M, sur chromosorb W) ou avec un appareil 90 P3 Aerograph (détecteur à conductibilité thermique) équipé de colonnes préparatives (longueur: 3 et 6 m; diamètre: 0,95 cm; remplissage: soit 30% SE 30, soit 30% Carbowax 20M, sur chromosorb W).

Les spectres infra-rouge ont été enregistrés sur les produits à l'état pur, entre lames de chlorure de sodium, avec un appareil Beckman IR 4240. Intensité des bandes: F, forte; m, moyenne; f, faible; tf, très faible. La position des bandes est exprimée en cm<sup>-1</sup>.

Les spectres <sup>1</sup>H RMN ont été enregistrés en solution dans CDCl<sub>3</sub> à 60 MHz sur un appareil Perkin–Elmer R-24A et à 90 MHz sur un appareil Jeol JNM EX 90. Les déplacements chimiques sont exprimés en ppm par rapport au tétraméthylsilane utilisé comme référence.

Les spectres <sup>13</sup>C RMN ont été enregistrés à 22,5 MHz sur un appareil Jeol JNM EX 90 en solution dans CDCl<sub>3</sub> (utilisé comme solvant et comme référence interne  $\delta = 77,00$  ppm).

Les spectres de masse sont effectués sur un spectromètre Varian MAT 311 à 70 eV (Centre Régional de Mesures physiques de l'Ouest, Rennes).

L'appareillage classiquement utilisé est constitué par un ballon à trois tubulures de volume convenable muni d'un agitateur mécanique, d'un réfrigérant à eau, d'un thermomètre, d'une ampoule à pression égalisée pour l'introduction des réactifs liquides et d'un dispositif permettant de travailler sous atmosphère de diazote.

### 7.2. Préparation des dérivés carbonylés

#### 7.2.1. Aldéhyde **1a**

 $CH_3-CH = CBr-CHO$  (Z). Il a été préparé selon [5] par action à 0°C de 0,2 mol (32 g) de dibrome sur 0,2 mol (14 g) de crotonaldéhyde en solution dans 100 ml d'eau.

Rdt = 70-80%; Eb 65°C/15 Torr. IR: 2840f, 2740f (CHO); 1700F (C=O); 1625F (CH=C). <sup>1</sup>H RMN: 2,10 (d, 3H, CH<sub>3</sub>, *J* 6,8 Hz); 7,23 (q, 1H, CH, *J* 6,8 Hz); 9.17 (s, 1H, CHO). <sup>13</sup>C RMN: 17,83 (CH<sub>3</sub>); 129,99 (C=); 150,84 (CH=); 185,87 (CHO).

*CH*<sub>3</sub>-*CH* = *CBr*-*CH*(*OC*<sub>2</sub>*H*<sub>5</sub>)<sub>2</sub> (*Z*). Il a été préparé selon [5] par chauffage pendant 2 h à 75°C du mélange de 0,11 mol (16,4 g) de α-bromocrotonaldéhyde, 6 ml d'éthanol absolu, 0,13 mol (19,3 g) d'orthoformiate d'éthyle et 0,006 mol (0,48 g) de nitrate d'ammonium. Rdt = 70%; Eb 46°C/0,05 Torr. IR: 1620m (CH=C); 1070F (C-O-C). <sup>1</sup>H RMN: 1,23 (t, 6H, C*H*<sub>3</sub>CH<sub>2</sub>, *J* 7,1 Hz); 1,80 (d, 3H, CH<sub>3</sub>, *J* 6,6 Hz); 3.25-4,90 (m, 4H, CH<sub>2</sub>); 4,81 (s, 1H, CH); 6,32 (q, 1H, CH=, *J* 6,6 Hz). <sup>13</sup>C RMN: 14,94 (*C*H<sub>3</sub>CH<sub>2</sub>); 16,05 (CH<sub>3</sub>); 61,72 (CH<sub>2</sub>); 102,39 (CH); 125,27 (BrC=); 126,94 (CH=).

 $CH_3-CH = C(SiMe_3)-CHO$  1a. Il a été préparé selon [6]. A une solution de 0,107 mol (24 g) de 3-bromo-2,4diéthoxybut-2-ène dans 170 ml de THF, on ajoute à  $-78^{\circ}$ C, 0,128 mol de *n*-butyllithium (80 ml de solution 1,6 M au sein de l'hexane). Le milieu est agité 1 h à  $-78^{\circ}$ C avant de laisser remonter la température jusqu'à  $-60^{\circ}$ C pendant 30 min. On refroidit à  $-78^{\circ}$ C et on introduit goutte à goutte 0,128 mol (13,9 g) de chlorotriméthylsilane. L'addition terminée, on maintient l'agitation pendant 30 min à  $-78^{\circ}$ C. Le mélange réactionnel est hydrolysé lentement sur une solution saturée de NH<sub>4</sub>Cl. Après extraction à l'éther, séchage sur K<sub>2</sub>CO<sub>3</sub> et élimination des solvants, l'aldéhyde est obtenu par distillation sous pression réduite (mélange d'isomères Z/E = 70/30).

Rdt = 70%; Eb  $62^{\circ}C/15$  Torr. IR: 3340f, 2750f, 2680 m (CHO); 1675F (C=O); 1600F (CH=C); 1250F, 845F, 760F (SiMe<sub>3</sub>).

Isomère Z. <sup>1</sup>H RMN: 0,20 (s, 9H, SiMe<sub>3</sub>); 2,07 (d, 3H, CH<sub>3</sub>, J 7,1 Hz); 7,18 (q, 1H, CH=, J 7,1 Hz); 9,46 (s, 1H, CHO). <sup>13</sup>C RMN: -0,01 (CH<sub>3</sub>Si); 18,25 (CH<sub>3</sub>); 144,84 (SiC=); 164,89 (CH=); 199,65 (C=O). Isomère E. <sup>1</sup>H RMN: 0,09 (s, 9H, SiMe<sub>3</sub>); 2,08 (d, 3H, CH<sub>3</sub>, J 7,1 Hz); 7,01 (q, 1H, CH=, J 7,1 Hz); 10,31 (s, 1H, CHO). <sup>13</sup>C RMN: -1,55 (CH<sub>3</sub>Si); 15,09 (CH<sub>3</sub>); 143,56 (SiC=); 155,55 (CH=); 194,85 (C=O).

### 7.2.2. Aldéhyde **1b** [4,6]

 $CH_2 = CBr-CHO$ . Il est préparé selon [5]: Rdt = 70-77%; Eb 39°C/17 Torr.

 $CH_2 = CBr - CH(OC_2H_5)_2$ . Il est préparé selon [5]: Rdt = 70-72%; Eb 65-66°C/14 Torr.

 $CH_2 = C(SiMe_3) - CH(OC_2H_5)_2$ . Il est préparé selon [6]: Rdt = 80-85%; Eb 75-78°C/20 Torr.

 $CH_2 = C(SiMe_3) - CHO$  1b. Rdt = 50-55%; Eb 40-42°C/50 Torr; Litt. [6]: Eb 60-69°C/120 Torr. IR: 3350f, 2690m (CHO); 1685F (C=O); 3060f, 890m (CH<sub>2</sub>=C); 1250F, 860F, 840F, 765m (SiMe<sub>3</sub>). <sup>1</sup>H RMN: 0,18 (s, 9H, SiMe<sub>3</sub>); 6,45-6,70 (m, 2H, CH<sub>2</sub>=); 9,46 (s, 1H, CHO).

#### 7.2.3. Cétone 1c

Elle est obtenue par oxydation de l'alcool secondaire, d'après [4].

Le réactif de Jones est préparé à partir de 0,06 mol (6,1 g) de CrO<sub>3</sub> dissous à froid dans 9 ml d'eau. On ajoute à 0°C, 5 ml de H<sub>2</sub>SO<sub>4</sub> 18 M puis 18 ml d'eau.

A une solution de 0,05 mol (7,6 g) d'alcool secondaire dans 43 ml d'acétone, on additionne à  $-10^{\circ}$ C l'oxydant préparé précédemment. L'addition terminée, on maintient l'agitation pendant 4 h à  $-10^{\circ}$ C. On ajoute, à la même température, 1 ml d'isopropanol, puis on continue l'agitation pendant 15 min à  $-10^{\circ}$ C avant d'hydrolyser sur une solution saturée en NaCl. Après extraction par 150 ml puis  $3 \times 50$  ml d'éther, les phases organiques réunies sont lavées par  $3 \times 50$  ml de solution saturée en NaCl. Les solvants sont éliminés à l'évaporateur rotatif et la cétone est obtenue par distillation sous pression réduite.

 $CH_3-CH = C(SiMe_3)-CO-CH_3$  (Z/E = 35/65) 1c. Rdt: 50%; Eb 58-60°C/15 Torr. IR: 1680F, 1665F (C=O); 1610m (CH=C); 1250F, 840F, 760m (SiMe\_3).

Isomère Z. <sup>1</sup>H RMN: 0,15 (s, 9H, SiMe<sub>3</sub>); 1,89 (d, 3H, CH<sub>3</sub>, J 6,9 Hz); 2,17 (s, 3H, CH<sub>3</sub>CO); 6,93 (q, 1H, CH=, J 6,9 Hz). <sup>13</sup>C RMN: 0,56 (CH<sub>3</sub>Si); 17,63 (CH<sub>3</sub>); 27,50 (CH<sub>3</sub>CO); 148,42 (CH=); 146,78 (SiC=); 205,50 (CO).

Isomère E. <sup>1</sup>H RMN: 0.07 (s, 9H, SiMe<sub>3</sub>); 1,71 (d, 3H, CH<sub>3</sub>, J 6,9 Hz); 2,17 (s, 3H, CH<sub>3</sub>CO); 5,88 (q, 1H, CH=, J 6,9 Hz). <sup>13</sup>C RMN: -1,52 (CH<sub>3</sub>Si); 17,10 (CH<sub>3</sub>); 31,74 (CH<sub>3</sub>CO); 136,67 (CH=); 149,74 (SiC=); 209,93 (CO).

Produit isolé par CPG préparative. IR: 1690F (C=O); 1250F. 840F, 750m (SiMe<sub>3</sub>). <sup>1</sup>H RMN: 0,05 et 0,12 (2s, 9H, SiMe<sub>3</sub>); 1,21 et 1,36 (2d, 3H, CH<sub>3</sub>, *J* 5,4 Hz); 2,07 et 1,90 (2s, 3H, CH<sub>3</sub>CO); 2,99 et 3,04 (2q, 1H, CH, *J* 5,4Hz). <sup>13</sup>C RMN: -3,64 et -1,50 (CH<sub>3</sub>Si); 15,33 et 15,99 (CH<sub>3</sub>); 24,25 et 28,85 (CH<sub>3</sub>CO); 56,35 et 56,68 (CH); 62,89 (C); 192,61 et 212,18 (CO).

# 7.2.4. Cétone 1d [6]

Elle est préparée par oxydation de l'alcool secondaire, d'après [4].

 $CH_2 = C(SiMe_3) - CO - CH_3$  1d. Rdt = 67%; Eb 48– 50°C/20 Torr; Litt. [6]: Eb 60–67°C/35 Torr. IR: 3070f, 910m (CH<sub>2</sub>=); 1680F (C=O); 1250F, 865F, 845F, 770m (SiMe<sub>3</sub>). <sup>1</sup>H RMN: 0,12 (s, 9H, SiMe<sub>3</sub>); 2,25 (s, 3H, CH<sub>3</sub>CO); 6,00–6,15 et 6,35–6,50 (2m, 2H, CH<sub>2</sub>=).

#### 7.3. Préparation des organométalliques

Ils sont préparés par des modes opératoires classiques décrits dans la littérature: organométalliques allyliques [18–21], organométalliques dérivant d'halogénures propargyliques [18–21], zinciques dérivant d'un  $\alpha$ -bromoester [22] ou d'un  $\alpha$ -bromoarnide [23], magnésiens vinyliques [24], magnésiens saturés ou phényliques [7b].

#### 7.4. Action des organométalliques sur **1a-d**

#### 7.4.1. Mode opératoire

Cas des organométalliques insaturés (conditions (b)). à 0,042 mol d'organométallique refroidi à 0°C, on ajoute goutte à goutte 0,035 mol d'aldéhyde (ou de cétone) en solution dans un égal volume de solvant. Après l'addition, on laisse revenir à température ambiante, puis l'agitation est maintenue pendant 15 h à cette température (dans le cas de l'aluminique, l'agitation est maintenue pendant 1 h à 0°C: conditions (a)). L'hydrolyse du milieu est réalisée à l'aide d'une solution ammoniacale glacée dans le cas du zincique et avec une solution saturée de NH<sub>4</sub>Cl glacée dans le cas de l'aluminique et du magnésien. Après extraction par  $5 \times 50$  ml d'éther, séchage sur K<sub>2</sub>CO<sub>3</sub> et élimination des solvants, le produit est isolé soit par distillation sous pression réduite, soit par évaporation-piégeage suivie d'une purification par CPG préparative.

Cas des magnésiens saturés et phénylique: addition de  $Me_3SiCl$  en présence de HMPT selon [13,14] (conditions (c)). Après la condensation de l'aldéhyde (ou de la cétone) sur le magnésien et agitation 15 h à 20°C, on additionne à 0°C 9 ml de HMPT puis on maintient l'agitation 1 h à cette température. On introduit 0,05 mol (5,4 g) de Me<sub>3</sub>SiCl à 0°C, puis le milieu est agité 4 h à température ambiante. On refroidit à 0°C et on ajoute goutte à goutte 0,05 mol (5,1 g) de triéthylamine. On laisse ensuite la température revenir à 20°C en 2 h. Le mélange réactionnel est hydrolysé sur une solution saturée de NH<sub>4</sub>Cl glacée puis extrait par  $5 \times 50$  ml d'éther. Les phases organiques réunies sont lavées par  $3 \times 50$  ml d'eau. Les solvants sont évaporés et les produits sont obtenus soit par distillation sous pression réduite, soit par évaporation-piégeage suivie d'une purification par CPG préparative.

# 7.4.2. Produits obtenus avec la

 $CH_3-CH = C(SiMe_3)-CHOH-CH_2-CH = CH_2$  (Z / E = 64 / 36) 3aa. Eb 98-100°C/15 Torr. IR: 3400 large (OH); 3080m, 1640m, 995m, 915F (CH=CH<sub>2</sub>); 1615m (CH=C); 1250F, 840F, 760m (SiMe<sub>3</sub>).

Isomère Z. <sup>1</sup>H RMN: 0,17 (s, 9H, SiMe<sub>3</sub>); 1,80 (d, 3H, CH<sub>3</sub>, J 7 Hz); 2,00–2,55 (m, 3H, CH<sub>2</sub> et OH); 4,17 (t, 1H, CHOH, J 6,3 Hz); 4,85–5,35 (m, 2H, CH<sub>2</sub>=); 5,50–6,50 (m, 1H, CH=); 6,35 (q, 1H, CH<sub>3</sub>CH=, J 7 Hz). <sup>13</sup>C RMN: 0,38 (CH<sub>3</sub>Si); 17,30 (CH<sub>3</sub>); 42,48 (CH<sub>2</sub>); 75,06 (CH); 117,39 (CH<sub>2</sub>=); 135,29 et 135,98 (CH=); 142,64 (SiC=).

Isomère E. <sup>1</sup>H RMN: 0,10 (s, 9H, SiMe<sub>3</sub>); 1,69 (d, 3H, CH<sub>3</sub>, J 7 Hz); 2,00–2,55 (m, 3H, CH<sub>2</sub> et OH); 4,70 (t, 1H, CHOH, J 6,3 Hz); 4,85–5,35 (m, 2H, CH<sub>2</sub>=); 5,50–6,50 (m, 2H, CH=). <sup>13</sup>C RMN: 0,38 (CH<sub>3</sub>Si); 14,94 (CH<sub>3</sub>); 42,00 (CH<sub>2</sub>); 75,54 (CH); 117,72 (CH<sub>2</sub>=); 134,34 et 135,29 (CH=); 145,68 (SiC=). Spectre de masse: *M* théorique: 184,12833; *M* trouvée: 184, 1285. m/e (%): 184 (M<sup>+</sup>, 0,9); 143 ([CH<sub>3</sub>CH=C(SiMe<sub>3</sub>)CHOH]<sup>+</sup>, 17,9); 127 ([CH<sub>3</sub>CH= C(SiMe<sub>3</sub>)CH<sub>2</sub>]<sup>+</sup>, 100); 73 ([SiMe<sub>3</sub>]<sup>+</sup>, 77,1); 53 ([CH<sub>2</sub>=CH-CH=CH]<sup>+</sup>, 21,6).

 $CH_3-CH = C(SiMe_3)-CHOH-CH(CH_3)-CH = CH_2$ **3ad.** (Mélange de stéréoisomères). Eb 105–107°C/15 Torr. IR: 3370 large (OH); 3090m, 1640m, 1010m, 915F (CH=CH<sub>2</sub>); 1620m (CH=C); 1250F, 845F, 760m (SiMe<sub>3</sub>). <sup>1</sup>H RMN: 0,13, 0,18 et 0,21 (3s, 9H, SiMe<sub>3</sub>); 0,80–1,20 (m, 3H, CH<sub>3</sub>–CH); 1,45–1,95 (m, 4H, CH<sub>3</sub> et OH); 2,15–2,50 (m, 1H, CH); 3,60–4,55 (m, 1H, CHOH); 4,70–5,30 (m, 2H, CH<sub>2</sub>=); 5,55–6,55 (m, 2H, CH=). <sup>13</sup>C RMN: -0,09, 0,32 et 0,74 (CH<sub>3</sub>Si); 12,79, 15,60, 15,75, 16,49, 17,21 et 17,36 (CH<sub>3</sub>); 42,36, 43,67 et 45,25 (CH); 74,37, 78,85 et 81,50 (CHOH); 114,05, 116,26 et 116,62 (CH<sub>2</sub>=); 136,85, 138,55, 140,67 et 142,10 (CH=); 141,74 (SiC=).

 $CH_3-CH = C(SiMe_3)-CHOH-CH_2-C_6H_5$  (Z/E = 65 /35) **3ae**. IR: 3580 et 3450F (OH); 3080f, 3060f, 3015m, 1495m, 700F (C\_6H\_5); 1610m (CH=); 1250F, 835F, 745F (SiMe\_3). Isomère Z. <sup>1</sup>H RMN: 0,27 (s, 9H, SiMe<sub>3</sub>); 1,60 (s, 1H, OH); 1,85 (d, 3H, CH<sub>3</sub>, J 6,9 Hz); 2,50–3,10 (m, 2H, CH<sub>2</sub>); 4,30–4,55 (m, 1H, CHOH); 6,43 (q, 1H, CH=, J 6,9 Hz); 7,29 (s, 5H, C<sub>6</sub>H<sub>5</sub>). <sup>13</sup>C RMN: 0,50 (CH<sub>3</sub>Si); 17,45 (CH<sub>3</sub>); 44,84 (CH<sub>2</sub>); 76,64 (CHOH); 126,34, 128,40 et 129,39 (CH ar); 136,40 (CH=); 138,93 (C ar); 142,72 (SiC=).

Isomère E. <sup>1</sup>H RMN: 0,21 (s, 9H, SiMe<sub>3</sub>); 1,60 (s, 1H, OH); 1,69 (d, 3H, CH<sub>3</sub>, J 6,9 Hz); 2,50–3,10 (m, 2H, CH<sub>2</sub>); 4,75–5,05 (m, 1H, CHOH); 5,91 (q, 1H, CH=, J 6,9 Hz); 7,29 (s, 5H, C<sub>6</sub>H<sub>5</sub>). <sup>13</sup>C RMN: 0,44 (CH<sub>3</sub>Si); 14,94 (CH<sub>3</sub>); 43,88 (CH<sub>2</sub>); 73,93 (CHOH); 126,40, 128,49 et 129,45 (CH ar); 134,43 (CH=); 138,67 (C ar); 145,50 (SiC=).

 $CH_3 - CH = C(SiMe_3) - CHOH - CH_2 - C \equiv CH \ (Z/E = 77/23)$  **3af**. Eb 60-62°C/0,05 Torr. IR: 3400 large (OH); 3310F, 2120f, 630F (C=CH); 1620m (CH=); 1255F, 850F, 760m (SiMe\_3).

Isomère Z. <sup>1</sup>H RMN: 0,18 (s, 9H, SiMe<sub>3</sub>); 1,79 (d, 3H, CH<sub>3</sub>, J 6,9 Hz); 1,95–2,20 (m, 2H,  $\equiv$ CH et OH); 2,25–2,50 (m, 2H, CH<sub>2</sub>); 4,15–4,50 (m, 1H, CHOH); 6,40 (q, 1H, CH=, J 6,9 Hz). <sup>13</sup>C RMN: 0,35 (CH<sub>3</sub>Si); 17,36 (CH<sub>3</sub>); 28,13 (CH<sub>2</sub>); 70,34 ( $\equiv$ CH); 74,02 (CHOH); 81,50 (C $\equiv$ ); 135,23 (CH=); 141,44 (SiC=).

Isomère E. <sup>1</sup>H RMN: 0,10 (s, 9H, SiMe<sub>3</sub>); 1,70 (d, 3H, CH<sub>3</sub>, J 6,9 Hz); 1,95–2,20 (m, 2H,  $\equiv$ CH et OH); 2,25–2,50 (m, 2H, CH<sub>2</sub>); 4,70–5,00 (m, 1H, CHOH); 5,87 (q, 1H, CH=, J 6,9 Hz). <sup>13</sup>C RMN: 0,26 (CH<sub>3</sub>Si); 15,06 (CH<sub>3</sub>); 27,50 (CH<sub>2</sub>); 70,34 ( $\equiv$ CH); 71,06 (CHOH); 81,50 (C $\equiv$ ); 135,57 (CH=); 144,49 (SiC=).

CH<sub>3</sub>-CH = C(SiMe<sub>3</sub>)-CHOH-CH(CH<sub>3</sub>)-C≡CH (Z / E = 77 / 23) 3ag. Eb 65-67°C / 0,05 Torr. IR: 3400 large (OH); 3310F, 2110f, 625F (C≡CH); 1615m (CH=); 1250F, 835F, 850F, 760m (SiMe<sub>3</sub>). <sup>1</sup>H RMN: 0,11 et 0,18 (2s, 9H, SiMe<sub>3</sub>); 0,85-1,30 (m, 3H, CH<sub>3</sub>-CH); 1,55-1,90 (m, 3H, CH<sub>3</sub>); 1,95-2,25 (m, 2H, ≡CH et OH); 2,30-2,80 (m, 1H, CH); 3,65-4,10 et 4,40-4,65 (2m, 1H, CHOH); 6,05 et 6,31 (2q, 1H, CH=, J 6,9 Hz). <sup>13</sup>C RMN (isomère Z): 0,56 (CH<sub>3</sub>Si); 17,45 (CH<sub>3</sub>-CH=); 18,01 (CH<sub>3</sub>); 33,23 (CH); 70,88 (≡CH); 80,31 (CHOH); 85,62 (C=); 139,09 (CH=); 140,37 (SiC=). <sup>13</sup>C RMN (isomère E): 0,26 (CH<sub>3</sub>Si); 16,79 (CH<sub>3</sub>-CH=); 18,01 (CH<sub>3</sub>); 33,79 (CH); 70,88 (≡CH); 77,50 (CHOH); 85,62 (C=); 138,13 (CH=); 143,55 (SiC=).

 $CH_3-CH = C(SiMe_3)-CHOH-CH_2-CO-OC_2H_5$  (Z/E = 69/31) 3ah. Eb 92-94°C/0,1 Torr. IR: 3500 large (OH); 1735F, 1720F (C=O); 1615m (CH=C); 1030F (C-O-C); 1250F, 835F, 845F, 760m (SiMe\_3).

Isomère Z. <sup>1</sup>H RMN: 0,19 (s, 9H, SiMe<sub>3</sub>); 1,22 (t, 3H,  $CH_3-CH_2$ , J 7,1 Hz); 1,75 (d, 3H,  $CH_3$ , J 6,9 Hz); 2,30–2,55 (m, 2H,  $CH_2$ ); 2,48 (s, 1H, OH); 4,12 (q, 2H,  $CH_2O$ , J 7, 1 Hz); 4,40–4,70 (m, 1H, CHOH);

6,37 (q, 1H, CH=, J 6,9 Hz). <sup>13</sup>C RMN: 0,32 (CH<sub>3</sub>Si); 14,10 (CH<sub>3</sub>-CH<sub>2</sub>); 17,36 (CH<sub>3</sub>); 42,15 (CH<sub>2</sub>); 60,50 (OCH<sub>2</sub>); 72.05 (CHOH); 136,76 (CH=); 141,26 (SiC=); 172,56 (CO).

Isomère E. <sup>1</sup>H RMN: 0,17 (s, 9H, SiMe<sub>3</sub>): 1,24 (t, 3H,  $CH_3-CH_2$ , J 7,1 Hz); 1,66 (d, 3H,  $CH_3$ , J 6,9 Hz); 2,48 (s, 1H, OH); 2,60–3,10 (m, 2H,  $CH_2$ ); 4,14 (q, 2H,  $CH_2O$ , J 7, 1 Hz); 4,95–5,25 (m, 1H, CHOH); 5,80 (q, 1H, CH=, J 6,9 Hz). <sup>13</sup>C RMN: 0,20 ( $CH_3Si$ ); 14,10 ( $CH_3-CH_2$ ); 14,91 ( $CH_3$ ); 41,31 ( $CH_2$ ); 60,60 ( $OCH_2$ ); 68,88 (CHOH); 134,64 (CH=); 144,63 (SiC=); 172,77 (CO).

 $CH_3-CH = C(SiMe_3)-CHOH-CH_2-CO-N(C_2H_5)_2$  (Z / E = 69/31) 3ai. Eb 123-125°C/0,1 Torr. IR: 3400 large (OH); 1620F (N-C=O); 1250F, 840F, 755F (SiMe<sub>3</sub>).

Isomère Z. <sup>1</sup>H RMN: 0,12 (s, 9H, SiMe<sub>3</sub>); 1,08 (t, 6H,  $CH_3$ - $CH_2$ , J 7,1 Hz); 1,72 (d, 3H,  $CH_3$ , J 6,9 Hz); 2,05–2,65 (m, 2H,  $CH_2$ ); 3,01–3,45 (m, 4H,  $CH_2$ N); 4,35–4,60 (m, 1H, CHOH); 4,47 (s, 1H, OH); 6,36 (q, 1H, CH=, J 6,9 Hz). <sup>13</sup>C RMN: 0,38 ( $CH_3$ Si); 12,82 ( $CH_3$ - $CH_2$ ); 17,27 ( $CH_3$ ); 39,79 ( $CH_2$ ); 39,94 ( $CH_2$ N); 71,60 (CHOH); 136,58 (CH=); 141,17 (SiC=); 171,64 (N-CO).

Isomère E. <sup>1</sup>H RMN: 0,06 (s, 9H, SiMe<sub>3</sub>); 1,04 (t, 6H, CH<sub>3</sub>-CH<sub>2</sub>, J 7,1 Hz); 1,61 (d, 3H, CH<sub>3</sub>, J 6,9 Hz); 2,05-2,65 (m, 2H, CH<sub>2</sub>); 3,01-3,45 (m, 4H, CH<sub>2</sub>N); 4,47 (s, 1H, OH); 4,90-5,10 (m, 1H, CHOH); 5,75 (q, 1H, CH=, J 6,9 Hz). <sup>13</sup>C RMN: 0,14 (CH<sub>3</sub>Si); 13,96 (CH<sub>3</sub>-CH<sub>2</sub>); 14,88 (CH<sub>3</sub>); 38,66 (CH<sub>2</sub>); 41,70 (CH<sub>2</sub>N); 69,03 (CHOH); 133,77 (CH=); 145,17 (SiC=); 171,73 (N-CO).

 $CH_3-CH = C(SiMe_3)-CHOH-C_6H_5$  (Z / E = 78 / 22) **3aj.** IR: 3400 large (OH); 1615m (CH=C); 1250F, 840F, 760m (SiMe\_3); 3090f, 3060f, 3030f, 1490m, 700F (C\_6H\_5). <sup>1</sup>H RMN: 0,02 et 0,07 (2s, 9H, SiMe\_3); 1,60-2,10 (m, 4H, CH\_3 et OH); 5,29 et 5,86 (2s, 1H, CHOH); 6,12 et 6,40 (2q, 1H, CH=, J 6,9 Hz); 7,10-7,60 (m, 5H, C\_6H\_5). <sup>13</sup>C RMN: 0,32 (CH\_3Si); 15,33 et 17,42 (CH\_3); 72,85 et 78,76 (CHOH); 126,02, 126,91, 127,09 et 128,05 (CH ar); 136,19 et 138,13 (CH=); 142,43 et 143,32 (SiC= et C ar).

 $CH_3-CH = C(SiMe_3)-CHOH-CH = CH-CH_3$  3ak. (Mélange de stéréoisomères). Eb 105–107°C/15 Torr. IR: 3400 large (OH); 3020f, 1690m (CH=CH); 970f (CH=CH E); 725f (CH=CH Z); 1250F, 835F, 845F, 760m (SiMe\_3). <sup>1</sup>H RMN: 0,09–0,16 (m, 9H, SiMe\_3); 1,55–1,85 (m, 7H, CH<sub>3</sub> et OH); 4,50–6,50 (m, 4H, CHOH et CH=). <sup>13</sup>C RMN; 0,23, 0,32 et 0,53 (CH<sub>3</sub>Si); 13,00 et 13,27 (CH<sub>3</sub>-CH=CH); 17,33 et 17,57 (CH<sub>3</sub>); 67,96, 72,93, 73,42 et 77,09 (CHOH); 122,50, 125,21, 125,90 et 126,46 (CH<sub>3</sub>-CH); 132,46, 135,00, 135,27 et 136,73 (CH=); 142,67 et 145,41 (SiC=).  $CH_3-CH = C(SiMe_3)-CH_2OH (Z/E = 63/37)$ . Il a été préparé selon [25]; Eb 65°C/15 Torr. IR: 3330 large (OH); 1625m (CH=C); 1250F, 845F, 760m (SiMe\_3).

Isomère Z. <sup>1</sup>H RMN: 0,16 (s, 9H, SiMe<sub>3</sub>); 1,50 (s, 1H, OH); 1,77 (d, 3H, CH<sub>3</sub>, J 6,8 Hz); 4,08 (s, 2H, CH<sub>2</sub>); 6,26 (q, 1H, CH=, J 6,8 Hz). <sup>13</sup>C RMN: -0,27(CH<sub>3</sub>Si); 17,36 (CH<sub>3</sub>); 69,03 (CH<sub>2</sub>); 138,58 (CH=); 140,10 (SiC=).

Isomère E. <sup>1</sup>H RMN: 0,08 (s, 9H, SiMe<sub>3</sub>); 1,50 (s, 1H, OH); 1,72 (d, 3H, CH<sub>3</sub>, J 6,8 Hz); 4,29 (s, 2H, CH<sub>2</sub>); 5,95 (q, 1H, CH=, J 6,8 Hz). <sup>13</sup>C RMN: -1,17 (CH<sub>3</sub>Si); 14,43 (CH<sub>3</sub>); 60,29 (CH<sub>2</sub>); 136,99 (CH=); 141,65 (SiC=).

 $CH_3-CH = C(SiMe_3)-CHOH-CH_3$  (Z / E = 67 / 33) **3al.** Il est isolé brut et utilisé tel quel, car il se déshydrate au cours de la distillation. IR: 3400 large (OH); 1620m (CH=C); 1255F, 840F, 760m (SiMe\_3).

Isomère Z. <sup>1</sup>H RMN: 0,17 (s, 9H, SiMe<sub>3</sub>); 1,22 (d, 3H, CH<sub>3</sub>, J 6,3 Hz); 1,60–1,85 (m, 4H, CH<sub>3</sub>–CH= et OH); 4,34 (q, 1H, CHOH, J 6,3 Hz); 6,33 (q, 1H, CH=, J 6,8 Hz). <sup>13</sup>C RMN: 0,44 (CH<sub>3</sub>Si); 17,27 (CH<sub>3</sub>–CH=); 24,16 (CH<sub>3</sub>); 72,14 (CHOH); 134,64 (CH=); 144,87 (SiC=).

Isomère E. <sup>1</sup>H RMN: 0,12 (s, 9H, SiMe<sub>3</sub>); 1,01 (d, 3H, CH<sub>3</sub>, J 6,3 Hz); 1,60–1,85 (m, 4H, CH<sub>3</sub>–CH= et OH); 4,90 (q, 1H, CHOH, J 6,3 Hz); 5,78 (q, 1H, CH=, J 6,8 Hz). <sup>13</sup>C RMN: 0,35 (CH<sub>3</sub>Si); 14,65 (CH<sub>3</sub>–CH=); 23,29 (CH<sub>3</sub>); 68,77 (CHOH); 133,67 (CH=); 144,87 (SiC=).

 $CH_3-CH = C(SiMe_3)-CHOH-C_2H_5$  (Z/E = 35/65) **3am.** IR: 3400 large (OH); 1615m (CH=C); 1250F, 840F, 760F (SiMe\_3).

Isomère Z. <sup>1</sup>H RMN: 0,16 (s, 9H, SiMe<sub>3</sub>); 0,90 (t, 3H, CH<sub>3</sub>, J 7,2 Hz); 1,10–1,80 (m, 6H, CH<sub>3</sub>CH=, CH<sub>2</sub> et OH); 4,04 (t, 1H, CHOH, J 6,3 Hz); 6,28 (q, 1H, CH=, J 6,4 Hz). <sup>13</sup>C RMN: 0,47 (CH<sub>3</sub>Si); 10,35 (CH<sub>3</sub>-CH<sub>2</sub>); 17,30 (CH<sub>3</sub>); 30,46 (CH<sub>2</sub>); 78,31 (CHOH); 135,89 (CH=); 143,50 (SiC=).

Isomère E. <sup>1</sup>H RMN: 0,09 (s, 9H, SiMe<sub>3</sub>); 0,86 (t, 3H, CH<sub>3</sub>, J 7,2 Hz); 1,10–1,80 (m, 6H, CH<sub>3</sub>CH=, CH<sub>2</sub> et OH); 4,57 (t, 1H, CHOH, J 6,3 Hz); 5,84 (q, 1H, CH=, J 6,4 Hz). <sup>13</sup>C RMN: 0,47 (CH<sub>3</sub>Si); 10,53 (CH<sub>3</sub>-CH<sub>2</sub>); 14,97 (CH<sub>3</sub>); 30,25 (CH<sub>2</sub>); 74,14 (CHOH); 134,70 (CH=); 146,15 (SiC=).

 $CH_3-CH(C_2H_5)-C(SiMe_3)=CH-OSiMe_3$  (Z/E = 22 /78) 4am. IR: 1610F, 1590F (CH=C); 1250F, 840F, 760F (SiMe\_3). <sup>1</sup>H RMN: 0,07 (s, 9H, OSiMe\_3); 0,18 (s, 9H, SiMe\_3); 0,84 (t, 3H, CH\_3-CH\_2, J 7,1 Hz); 1,05 (d, 3H, CH\_3, J 7,1 Hz); 1,30-1,65 (m, 2H, CH\_2); 2,25-2,60 (m, 1H, CH); 6,20 (isomère E) et 6,60 (isomère Z) (2s, 1H, CH=). <sup>13</sup>C RMN (isomère E): -0,45 et -0,03 (CH\_3Si); 13,00 (CH\_3-CH\_2); 20,19 (CH\_3); 29,20 (CH\_2); 34,87 (CH); 122,23 (SiC=); 143,02 (CH=). <sup>13</sup>C RMN (isomère Z): -0,45 et -0,03 (CH<sub>3</sub>Si); 12,38 (CH<sub>3</sub>-CH<sub>2</sub>); 21,75 (CH<sub>3</sub>); 30,37 (CH<sub>2</sub>); 37,71 (CH); 122,23 (SiC=); 146,13 (CH=).

 $CH_3-CH = C(SiMe_3)-CHOH-CH(CH_3)_2$  (E) 3an. IR: 3620 et 3480F (OH); 1610m (CH=C); 1250F, 840F, 760m (SiMe\_3). <sup>1</sup>H RMN: 0,12 (s, 9H, SiMe\_3); 0,77 et 1,04 (2d, 6H, CH<sub>3</sub>, J 6,6 Hz); 1,45 (s, 1H, OH); 1,71 (d, 3H, CH<sub>3</sub>-CH=, J 6,8 Hz); 1,55-2,05 (m, 1H, CH); 4,28 (d, 1H, CHOH, J 9,1 Hz); 5,97 (q, 1H, CH=, J 6,8 Hz). <sup>13</sup>C RMN: 0,77 (CH<sub>3</sub>Si); 15,48 (CH<sub>3</sub>); 19,28 et 19,33 (CH<sub>3</sub>CH); 33,80 (CH); 77,86 (CHOH); 136,31 (CH=); 144,96 (SiC=).

 $CH_3 - CH[CH(CH_3)_2] - C(SiMe_3) = CH - OSiMe_3$  (E) **4an.** IR: 1610F, 1590m (CH=C); 1250F, 850F, 750m (SiMe\_3). <sup>1</sup>H RMN: 0,07 (s, 9H, OSiMe\_3); 0,18 (s, 9H, SiMe\_3); 0,81 et 0,91 (2d, 6H, (CH\_3)\_2CH, J 6,1 Hz); 1,06 (d, 3H, CH\_3, J 6,4 Hz); 1,60-2,25 (m, 2H, CH); 6,19 (s, 1H, CH=). <sup>13</sup>C RMN: -0,42 et -0,06 (CH\_3Si); 18,67 (CH\_3); 21,48 et 22,46 ((CH\_3)\_2CH); 32,19 (CH); 40,72 (CH-C=); 122,02 (SiC=); 142,72 (CH=).

 $CH_3-CH[C(CH_3)_3]-C(SiMe_3)=CH-OSiMe_3$  (E) 4ao. Eb 57°C/0,05 Torr. IR: 1610F, 1590m (CH=C); 1260F, 855F, 840F, 760m (SiMe\_3). <sup>1</sup>H RMN: 0,08 (s, 9H, OSiMe\_3); 0,18 (s, 9H, SiMe\_3); 0,89 (s, 9H, (CH\_3)\_3C); 1,06 (d, 3H, CH\_3, J 7,2 Hz); 2,40 (q, 1H, CH, J 7,2 Hz); 6,26 (s, 1H, CH=). <sup>13</sup>C RMN: -0,45 et 0,95 (CH\_3Si); 15,63 (CH\_3); 29,05 ((CH\_3)\_3C); 34,72 (C); 42,81 (CH); 120,20 (SiC=); 144,04 (CH=). Spectre de masse: *M* théorique: 272,19916; *M* trouvée: 272,1974. m/e (%): 272 (M<sup>+</sup>, 0,3); 215 ([CH\_3-CH-C(SiMe\_3)=CH-OSiMe\_3]<sup>+</sup>, 100); 73 ([SiMe\_3]<sup>+</sup>, 71,0); 53 ([CH\_3-CH=C=CH]<sup>+</sup>, 70,1).

#### 7.4.3. Produits obtenus avec 1b

 $CH_2 = C(SiMe_3) - CHOH - CH_2 - CH = CH_2$  **3bc**. IR: 3400 large (OH); 3080f, 1640m, 995F, 915F (CH<sub>2</sub>=CH); 3060f, 935F (CH<sub>2</sub>=); 1250F, 855F, 840F, 760m (SiMe<sub>3</sub>). <sup>1</sup>H RMN: 0,11 (s, 9H, SiMe<sub>3</sub>); 2,00 (s, 1H, OH); 2,10-2,45 (m, 2H, CH<sub>2</sub>); 4,10-4,40 (m, 1H, CHOH); 4,90-6,05 (m, 5H, CH<sub>2</sub>= et CH=CH<sub>2</sub>). <sup>13</sup>C RMN: -0,72 (CH<sub>3</sub>Si); 42,00 (CH<sub>2</sub>); 74,50 (CHOH): 117,78 (CH<sub>2</sub>=CH); 123,87 (CH<sub>2</sub>=); 134,85 (CH=); 154,36 (SiC=).

 $CH_2 = C(SiMe_3) - CHOH - C_6H_5$  **3bj**. IR: 3400 large (OH); 3060f, 935m (CH<sub>2</sub>=C); 1250F, 855F, 840F, 760m (SiMe<sub>3</sub>); 3090f, 3030f, 1600f, 1490m, 700F (C<sub>6</sub>H<sub>5</sub>). <sup>1</sup>H RMN: 0,02 (s, 9H, SiMe<sub>3</sub>); 2,22 (s, 1H, OH); 5,38 (s, 1H, CHOH); 5,55-5,65 et 5,90-6,05 (2m, 2H, CH<sub>2</sub>=); 7,30-7,40 (m, 5H, C<sub>6</sub>H<sub>5</sub>). <sup>13</sup>C RMN: -0,93 (CH<sub>3</sub>Si); 77,45 (CHOH); 124,17 (CH<sub>2</sub>=); 127,09, 127,87 et 128,23 (CH ar); 142,67 (C ar); 153,97 (SiC=).

 $C_6H_5-CH_2-C(SiMe_3) = CH-OSiMe_3$  (Z/E = 15/85) 4bj. IR: 1615F (CH=C); 1260F, 870F, 850F, 755m (SiMe\_3); 3090f, 3035m, 1495m, 700m (C<sub>6</sub>H<sub>5</sub>).

Isomère E. <sup>1</sup>H RMN: -0,03 (s, 9H, OSiMe<sub>3</sub>); 0,28 (s, 9H, SiMe<sub>3</sub>); 3,61 (s, 2H, CH<sub>2</sub>); 6,50 (s, 1H, CH=); 7,25-7,35 (m, 5H, C<sub>6</sub>H<sub>5</sub>). <sup>13</sup>C RMN: -1,02 et -0,42 (CH<sub>3</sub>Si); 31,83 (CH<sub>2</sub>); 116,56 (SiC=); 125,33, 127,90 et 128,76 (CH ar); 142,19 (C ar); 143,77 (CH=).

Isomère Z. <sup>1</sup>H RMN: -0.01 (s, 9H, OSiMe<sub>3</sub>); 0,30 (s, 9H, SiMc<sub>3</sub>); 3,40 (s, 2H, CH<sub>2</sub>); 6,81 (s, 1H, CH=); 7,25-7,35 (m, 5H, C<sub>6</sub>H<sub>5</sub>). <sup>13</sup>C RMN: -0.60 et -0.51 (CH<sub>3</sub>Si); 37,41 (CH<sub>2</sub>); 116,56 (SiC=); 125,63, 127,90 et 128,58 (CH ar); 142,19 (C ar); 143,77 (CH=).

Remarque: attribution des configurations Z et E

$$C_{6}H_{5}CH_{2} C = C < H_{H}^{OSiMe_{3}} et$$

$$E$$

$$C_{6}H_{5}CH_{2} C = C < H_{Me_{3}Si}^{H} C = C < H_{OSiMe_{3}}^{H}$$

Ζ

Le spectre <sup>1</sup>H RMN du mélange des deux isomères présente:

- deux singulets à 3,40 ppm et 3,61 ppm (intensités relatives: 15/85) caractéristiques de CH<sub>2</sub>;

 deux singulets à 6,50 ppm et 6,81 ppm (intensités relatives: 85/15) caractéristiques des protons vinyliques.

L'étude par effet NOE, montre que l'irradiation à 3,40 ppm provoque une augmentation de l'intensité du signal à 6,81 ppm; par contre, l'irradiation à 3,61 ppm n'entraine aucune modification de l'intensité des signaux à 6,50 ppm et 6,81 ppm. Ceci indique donc que les deux signaux de faible intensité (3,40 ppm et 6,81 ppm) correspondent à l'isomère Z où les protons du CH<sub>2</sub> et le proton vinylique sont spatialement voisins.

Nous avons ensuite déterminé la stéréochimie des autres éthers d'énols silylés par comparaison.

 $CH_2 = C(SiMe_3) - CHOH - CH_3$  **3bl**. Rdt = 60%; Eb 56-57°C/15 Torr; Litt. [6]: Eb 60-65°C/20 Torr. IR: 3350F (OH); 3050f, 910m (CH<sub>2</sub> =); 1250F, 850F, 840F, 755m (SiMe<sub>3</sub>). <sup>1</sup>H RMN: 0,13 (s, 9H, SiMe<sub>3</sub>); 1,23 (d, 3H, CH<sub>3</sub>, J 6 Hz); 2,35 (s, 1H, OH); 4,20-4,65 (m 1H, CHOH); 5,25-5,40 et 5,70-5,85 (2m, 2H, CH<sub>2</sub> =).

 $CH_2 = C(SiMe_3) - CHOH - C_2H_5$  3bm. IR: 3380 large (OH); 3050f, 930F (CH<sub>2</sub> =); 1250F, 850F, 835F, 760m (SiMe<sub>3</sub>). <sup>1</sup>H RMN: 0,09 (s, 9H, SiMe<sub>3</sub>); 0,88 (t, 3H, CH<sub>3</sub>, J 7,1 Hz); 1,30-1,70 (m, 2H, CH<sub>2</sub>); 1,88 (s, 1H, OH); 4,16 (t, 1H, CHOH, J 6,2 Hz); 5,38 et 5,72 (2d, 2H,  $CH_2 =$ , J 2,5 Hz). <sup>13</sup>C RMN: -0,63 ( $CH_3$ Si); 9,96 ( $CH_3$ ); 29,95 ( $CH_2$ ); 77,57 (CHOH); 123,87 ( $CH_2 =$ ); 155,08 (SiC=).

 $C_2H_5-CH_2-C(SiMe_3) = CH-OSiMe_3$  (Z / E = 70 / 30) 4bm. IR: 1610F (CH=C); 1260F, 850F, 755m (SiMe\_3). <sup>1</sup>H RMN: 0,11 (s, 9H, OSiMe\_3); 0,18 (s, 9H, SiMe\_3); 0,70-1,00 (m, 3H, CH\_3); 1,10-1,50 (m, 2H, CH\_2); 1,75-2,25 (m, 2H, CH\_2-C=); 6,25 (isomère E) et 6,62 (isomère Z) (2s, 1H, CH=). <sup>13</sup>C RMN (isomère Z): -0,60 et -0,51 (CH\_3Si); 13,69 (CH\_3); 24,55 (CH\_2); 33,65 (CH\_2-C=); 117,43 (SiC=); 146,75 (CH=). <sup>13</sup>C RMN (isomère E): -0,60 et -0,51 (CH\_3Si); 14,35 (CH\_3); 23,06 (CH\_2); 28,34 (CH\_2-C=); 117,72 (SiC=); 143,23 (CH=).

# 7.4.4. Produits obtenus avec 1c

 $CH_3-CH = C(SiMe_3)-C(CH_3)(OH)-CH_2-CH = CH_2$ (Z / E = 37 / 63) 3cc. IR: 3570 et 3460F (OH); 3080m, 1640m, 1000m, 910m (CH=CH<sub>2</sub>); 1250F, 850F, 835F, 760F (SiMe<sub>3</sub>).

Isomère Z. <sup>1</sup>H RMN: 0,23 (s, 9H, SiMe<sub>3</sub>); 1,27 (s, 3H, CH<sub>3</sub>); 1,79 (d, 3H, CH<sub>3</sub>-CH=, J 7,2 Hz); 1,96 (s, 1H, OH); 2,15–2,85 (m, 2H, CH<sub>2</sub>); 4,90–5,25 (m, 2H, =CH<sub>2</sub>); 5,45–6,15 (m, 1H, CH=); 6,25 (q, 1H, CH<sub>3</sub>-CH=, J 7,2 Hz). <sup>13</sup>C RMN: 2,47 (CH<sub>3</sub>Si); 17,27 (CH<sub>3</sub>-CH=); 28,93 (CH<sub>3</sub>); 46,92 (CH<sub>2</sub>); 76,28 (C); 118,56 (CH<sub>2</sub>=); 132,31 (CH=); 134,16 (CH<sub>3</sub>-CH=); 150,96 (SiC=).

Isomère E. <sup>1</sup>H RMN: 0,08 (s, 9H, SiMe<sub>3</sub>); 1,37 (s, 3H, CH<sub>3</sub>); 1,75 (d, 3H, CH<sub>3</sub>-CH=, J 7,2 Hz); 1,96 (s, 1H, OH); 2,15–2,85 (m, 2H, CH<sub>2</sub>); 4,90–5,25 (m, 2H, =CH<sub>2</sub>); 5,45–6,15 (m, 2H, CH=). <sup>13</sup>C RMN: 1,01 (CH<sub>3</sub>Si); 16,64 (CH<sub>3</sub>-CH=); 28,46 (CH<sub>3</sub>); 46,81 (CH<sub>2</sub>); 76,49 (C); 118,79 (CH<sub>2</sub>=); 132,31 (CH=); 134,55 (CH<sub>3</sub>-CH=); 150,96 (SiC=).

 $CH_3-CH(C_6H_5)-C(SiMe_3)=C(CH_3)-OSiMe_3$  (E) 4cj. IR: 1600F (C=C); 1250F, 845F, 760F (SiMe\_3); 3080f, 3060f, 3020m, 1490m, 700F (C<sub>6</sub>H<sub>5</sub>). <sup>1</sup>H RMN: 0,01 (s, 9H, OSiMe\_3); 0,17 (s, 9H, SiMe\_3); 1,45 (d, 3H, CH\_3, J 7,1 Hz); 2,02 (s, 3H, CH\_3-C=); 4,25 (q, 1H, CH, J 7,1 Hz); 7,26 (s, 5H, C<sub>6</sub>H<sub>5</sub>). <sup>13</sup>C RMN: 0,89 et 1,54 (CH<sub>3</sub>Si); 18,19 (CH<sub>3</sub>); 23,23 (CH<sub>3</sub>-C=); 36,90 (CH); 118,65 (SiC=); 124,79, 127,12 et 127,60 (CH ar); 147,02 (C ar); 153,10 (SiOC=).

 $CH_3 - CH(C_2H_5) - C(SiMe_3) = C(CH_3) - OSiMe_3$  (E) **4cm.** IR: 1610F, 1590F (C=C); 1250F, 840F, 760F (SiMe\_3). <sup>1</sup>H RMN: 0,12 (s, 9H, OSiMe\_3); 0,18 (s, 9H, SiMe\_3); 0,80 (t, 3H,  $CH_3 - CH_2$ , J 7,1 Hz); 1,51 (d, 3H,  $CH_3$ , J 7 Hz); 1,05-1,65 (m, 2H,  $CH_2$ ); 1,88 (s, 3H,  $CH_3 - C=$ ); 2,20-2,75 (m, 1H, CH). <sup>13</sup>C RMN: 0,95 et 1,75 (CH\_3Si); 13,18 (CH\_3 - CH\_2); 19,69 (CH\_3); 23,47 (CH<sub>3</sub>-C=); 28,69 (CH<sub>2</sub>); 36,24 (CH); 117,96 (SiC=); 152,27 (SiOC=). Spectre de masse: *M* théorique: 258,1835; *M* trouvée: 258,1826. m/e (%): 258 (M<sup>+</sup>, 4,0); 229 ([CH<sub>3</sub>-CH-C(SiMe<sub>3</sub>)=C(CH<sub>3</sub>)-OSiMe<sub>3</sub>]<sup>+</sup>, 49,8); 81 ([CH<sub>3</sub>-C(C<sub>2</sub>H<sub>5</sub>)=C=C(CH<sub>3</sub>)]<sup>+</sup>, 14,5); 73 ([SiMe<sub>3</sub>]<sup>+</sup>, 100); 67 ([CH<sub>3</sub>-CH-C(CH<sub>3</sub>)]<sup>+</sup>, CH=C=C(CH<sub>3</sub>)]<sup>+</sup>, 87,5).

#### 7.4.5. Produits obtenus avec 1d

 $CH_2 = C(SiMe_3) - C(CH_3)(OH) - CH_2 - CH = CH_2$  3dc. Eb 34°C/0,05 Torr. IR: 3560 et 3460F (OH); 3070f, 1640f, 995F, 915F (CH<sub>2</sub>=CH); 3060f, 925F (CH<sub>2</sub>=); 1245F, 855F, 835F, 765m (SiMe<sub>3</sub>). <sup>1</sup>H RMN: 0,13 (s, 9H, SiMe<sub>3</sub>); 1,27 (s, 3H, CH<sub>3</sub>); 1,85 (s, 1H, OH); 2,00-2,60 (m, 2H, CH<sub>2</sub>); 4,90-6,05 (m, 5H, CH<sub>2</sub> et CH=CH<sub>2</sub>). <sup>13</sup>C RMN: 0,44 (CH<sub>3</sub>Si); 29,59 (CH<sub>3</sub>); 47,40 (CH<sub>2</sub>); 76,49 (C); 118,95 (CH<sub>2</sub>=CH); 123,03 (CH<sub>2</sub>=); 134,13 (CH=); 159,61 (SiC=). Spectre de masse: *M* théorique: 184,12833; *M* trouvée: 184,1286. *m/e* (%): 184 (M<sup>+</sup>, 0,1); 169 ([CH<sub>2</sub>=C(SiMe<sub>3</sub>)-C(OH)-CH<sub>2</sub>-CH=CH<sub>2</sub>]<sup>+</sup>, 0,6); 128 (CH<sub>2</sub>=C (SiMe<sub>3</sub>)-CHO, 11,4); 127 ([CH<sub>2</sub>=C(SiMe<sub>3</sub>)-CH-CH<sub>3</sub>]<sup>+</sup>, 100); 73 ([SiMe<sub>3</sub>]<sup>+</sup>, 48,3); 53 ([CH<sub>2</sub>=CH-CH=CH]<sup>+</sup>, 15,5).

 $C_6H_5-CH_2-C(SiMe_3)=C(CH_3)-OSiMe_3$  (E) 4dj. IR: 1610F (C=C); 1250F, 845F, 750m (SiMe\_3); 3080f, 3060m, 3020m, 1490m, 735m, 695F (C<sub>6</sub>H<sub>5</sub>). <sup>1</sup>H RMN: 0,16 (s, 9H, OSiMe\_3); 0,23 (s, 9H, SiMe\_3); 2,12 (s, 3H, CH\_3); 3,60 (s, 2H, CH\_2); 7,30 (s, 5H, C<sub>6</sub>H<sub>5</sub>). <sup>13</sup>C RMN: 0,44 et 0,77 (CH\_3Si); 22,85 (CH\_3); 34,43 (CH\_2); 111,58 (SiC=); 125,94, 126,79 et 127,09 (CH ar); 142,70 (C ar); 154,18 (SiOC=).

 $C_2H_5-CH_2-C(SiMe_3)=C(CH_3)-OSiMe_3$  (E) 4dm. IR: 1610F (C=C); 1250F, 840F, 750m (SiMe\_3). <sup>1</sup>H RMN: 0,10 (s, 9H, OSiMe\_3); 0,18 (s, 9H, SiMe\_3); 0,86 (t, 3H, CH<sub>3</sub>, J 6,4 Hz); 1,00–1,45 (m, 2H, CH<sub>2</sub>); 1,87 (s, 3H, CH<sub>3</sub>-C=); 1,85–2,10 (m, 2H, CH<sub>2</sub>-C=). <sup>13</sup>C RMN: 0,44 et 0,71 (CH<sub>3</sub>Si); 14,38 (CH<sub>3</sub>); 22,88 (CH<sub>3</sub>-C=); 23,66 (CH<sub>2</sub>); 31,32 (CH<sub>2</sub>-C=); 113,70 (SiC=); 152,69 (SiOC=).

#### **Bibliographie**

- E.W. Colvin, Silicon in Organic Synthesis, Butterworths, London, 1981, pp. 44-82 et références citées.
- W.P. Weber, Silicon Reagents for Organic Synthesis, Springer, Berlin, 1983, pp. 79-113 et références citées.
- [3] I. Fleming, J. Dunoguès et R. Smithers, The electrophilic substitution of allylsilanes and vinylsilanes, dans Organic Reactions, Vol. 37, Wiley, New York, 1989, pp. 57-575 et références citées.
- [4] R.P. Hsung, Synth. Commun., 24 (1994) 181.
- [5] A.B. Smith III, P.A. Levenberg, P.J. Jerris, R.M. Scarborough, Jr. et P.M. Wovkulich, J. Am. Chem. Soc., 103 (1981) 1501.
- [6] H. Okumoto et J. Tsuji, Synth. Commun., 12 (1982) 1015.
- [7] M. Kharasch et O. Reinmuth, Grignard Reactions of Nonmetallic Substances, Prentice Hall, New York, 1954, (a) p. 196; (b) p. 5.
- [8] E.I. Negishi, Organometallics in Organic Synthesis, Vol. I, J. Wiley, New York, 1980, pp. 127-133 et références citées.
- [9] J. March, Advanced Organic Chemistry, Wiley, New York, 1985, pp. 712-714 et références citées.
- [10] G. Courtois et L. Miginiac, J. Organomet. Chem., 69 (1974) 1 et références citées.
- [11] D. Mesnard et L. Miginiac, J. Organomet. Chem., 440 (1992) 277.
- [12] L. Duhamel, J. Gralak et A. Bouyanzer, J. Chem. Soc. Chem. Commun., (1993) 1763 et références citées.
- [13] G. Stork et P.F. Hudrlik, J. Am. Chem. Soc., 90 (1968) 4462 et 4464.
- [14] Y. Horiguchi, S. Matsuzawa, E. Nakamura et I. Kuwajima, Tetrahedron Lett., 27 (1986) 4025.
- [15] T.H. Chan, W. Mychajlowskij et R. Amouroux, Tetrahedron Lett., 16 (1977) 1605.
- [16] P. Brownbridge, Silyl enol ethers in synthesis Part I, Synthesis, (1983) 1 et références citées.
- [17] P. Brownbridge, Silyl enol ethers in synthesis Part II, Synthesis, (1983) 85 et références citées.
- [18] F. Barbot, Bull. Soc. Chim. Fr., (1984) II-83 et références citées.
- [19] M. Gaudemar, Ann. Chim. Fr., 1 (1956) 161; M. Gaudemar, Bull. Soc. Chim. Fr., (1962) 974; M. Gaudemar, Bull. Soc. Chim. Fr., (1963) 1475.
- [20] Ch. Prévost, Ph. Miginiac et L. Miginiac, Bull. Soc. Chim. Fr., (1964) 2485.
- [21] L. Miginiac, Ph. Miginiac et Ch. Prévost, Bull. Soc. Chim. Fr., (1965) 3560.
- [22] J. Curé et M. Gaudemar, Bull. Soc. Chim. Fr., (1968) 3244.
- [23] J. Curé et M. Gaudemar, Bull. Soc. Chim. Fr., (1973) 2418.
- [24] H. Normant, Bull. Soc. Chim. Fr., (1957) 728.
- [25] M.R. Johnson et B. Rickborn, J. Org. Chem., 35 (1970) 1041.